Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(30): e2101682, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085323

RESUMO

The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual-but functional-hybrid materials. In this work, a key way of designing centimeter-scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper-containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin-atacamite composite material is developed and its structure is confirmed using neutron diffraction, X-ray diffraction, high-resolution transmission electron microscopy/selected-area electron diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems.


Assuntos
Materiais Biomiméticos/química , Biopolímeros/química , Cloretos/química , Cobre/química , Nanocompostos/química , Poluição Química da Água/prevenção & controle , Amônia/química , Catálise , Humanos , Conformação Molecular , Oxirredução , Porosidade , Impressão Tridimensional , Relação Estrutura-Atividade
2.
Mar Drugs ; 18(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498448

RESUMO

The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of α-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals.


Assuntos
Antozoários/anatomia & histologia , Antozoários/química , Quitina/isolamento & purificação , Animais , Quitina/química , Eletroquímica
3.
Carbohydr Polym ; 202: 397-403, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30287015

RESUMO

Chitin, poly N-acetylglucosamine, has a great potential for use on an industrial scale as an enzyme carrier but it has an unfavorable particle structure that can be modified using ionic liquids (ILs). Several ionic liquids were investigated that have the same substituents on the ring (methyl- and propyl-) but differed in the type of cationic ring (pyrrolidinium, piperidinium, and piperazinium). Organic acid ions (acetic and lactic) were used as counter ions. 1-ethyl-3-methyl-imidazolium acetate and 1-ethyl-3-methyl-imidazolium lactate were used as a reference. The results confirm that the chitin particle structure or size, or both, simultaneously changes if chitin is dissolved in an IL and then precipitated. Organic acid anions and short substituents on the cationic ring of ILs influenced particle modification substantially, whereas the type of ring played a minor role. Additionally, the ionic liquids [MPpyrr][OAc], [MPpip][OAc] and [DMPpz][OAc] could be reused up to at least 4 times without losing their ability to dissolve chitin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...